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ABSTRACT 

This Research Contribution addresses the problem of explicitly taking into account 
uncertainty about the demand for spare parts in making inventory procurement and stock- 
age decisions. The model described provides for a unified treatment of the closely re- 
lated problems of statistical estimation of demand and resource allocation within the 
inventory system, and leads to an easily implemented, efficient method of determining 
requirements for spare parts both in the early provisioning phase and in later periods of 
operations when demand data has accumulated. 

Analyses of the model's theoretical foundations and of sample outcomes of the model 
based upon data on parts intended for use in the F-14 lead to conclusions of great impor- 
tance to both support planners and operations planners. 

Finally, of particular significance is the ability afforded the planner by this model to 
quantify the impact on inventory system costs of varying levels of system reliability or 
management uncertainty as to projected system performance. This will provide an eco- 
nomic basis for analysis of such alternatives as early deployment, operational testing, 
and equipment redesign. 
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I.   INTRODUCTION AND SUMMARY 

Numerous studies 1 have demonstrated that the demand for aircraft spare parts is 
typically uncorrelated with identifiable program factors.   In the absence of such deter- 
ministic predictors, statistical estimation procedures provide the best alternative means 
of estimating future requirements.   Statistical estimation consists of specifying the 
probability distribution of demand which, in some sense, best explains the available data 
or, in the absence of data, best reflects the prior beliefs of the designer and the exper- 
ience of the inventory manager.   Having specified the probability distribution, it is 
necessary to determine the optimal inventory level as a function of the associated costs 
and budget constraints. 

Typically the related problems of estimation and resource allocation are treated 
separately. 2  In simple inventory problems this is probably justified.   However, when 
planning support of an extremely complex weapons system, with very great numbers of 
parts of widely varying cost and uncertain performance, a unified treatment of these 
problems is essential.   In short, the objective must be to specify the optimal inventory 
decision when system performance may be projected with only limited assurance. 

This paper describes such a procedure for determining optimal inventory levels for 
aircraft spare parts.   The procedure may be used before demand data has been generated 
by incorporating estimates developed at provisioning and provides for progressive updating 
of estimates as data becomes available.   The model is simple to apply and extremely 
efficient and requires only existing data sources.   It is based on a few intuitive assump- 
tions which have been repeatedly demonstrated to correspond closely to data on existing 
systems.   The model may therefore be used with confidence, not only to determine 
inventory requirements, but perhaps more importantly to evaluate budgetary and opera- 
tional implications of support policies. 

An application of these procedures to a number of parts currently being provisioned 
for the F-14 is described.   From this application and from theoretical consideration, a 
number of very important results are derived.   The most important of these is that a 
spare parts inventory adequate to assure high system reliability early in system life will 
be very costly and extremely wasteful.   The inventory required will be large but very 
little of it will actually be used.   As data accumulates, however, it will be possible to 
design inventories to provide equal reliability assurance at greatly reduced cost.   Thus, 

See for example Denicoff, M., and Haber, S., "A Study of Usage and Program Relation- 
ships for Aviation Repair Parts," The George Washington University, Logistics Research 
Project, Serial T-140/62, 7 August 1962.   The probability model we developed here is 
proposed in this reference and many others on empirical grounds.   The fact that small 
correlations may be expected from data realized from this process does not appear to 
have been noted before. 
2 

An exception is Zacks, S., "A Two-Echelon Multi-Station Inventory Model for Navy 
Applications," The George Washington University, Logistics Research Project, Tech- 
nical Memorandum, Serial TM-15175, 31 July 1968. Zacks' approach is also Bayesian 
and uses the same probability model as that developed here. 
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unless there are vital, overriding operational requirements, the most desirable course of 
action is to accept low reliability in the early life of the system, procuring parts as needed 
until sufficient data has been accumulated to permit more economical inventory design. 

Further significant results are summarized in the following paragraphs and are dis- 
cussed in the remaining sections of the report. 

1. The model described in this paper provides for a unified treatment of the closely 
related problems of statistical estimation of demand and resource allocation within the 
inventory system, which are typically treated separately.   A frequent criticism of theo- 
retical inventory models is that they do not reflect the uncertainty about the parameters 
which are inputs to the model --in particular, the probability distribution of demand. 
The procedure described here explicitly introduces such uncertainties into the inventory 
decision process. 

2. Uncertainty about demand distributions can result from a number of factors.   At 
the time of initial provisioning, estimates may be quite tentative due to the lack of any 
operational data on which to base them.   Further, a system designed to operate worldwide, 
in a host of unpredictable environments, with a variety of maintenance procedures and 
skill levels supporting it, being employed in widely varying missions, can be expected 
to have not one, but many, rates of demand.   Both forms of uncertainty are relevant to 
the inventory decision and are incorporated into the model described in this report. 
Furthermore, these two types of uncertainty imply different requirements for inventory 
support. 

3. The model developed in this report enables the inventory manager to incorporate 
all of his particular knowledge about a deployment into the optimal decision process. 
Peculiarities about a particular deployment or a squadron's maintenance practices, as 
well as the size of the squadron and the projected flying hour program, can be reflected 
in the inputs to the model. 

4. The effect of uncertainty about the demand rate is to increase the variance of the 
probability distribution of demands.   In turn, this high variance typically implies higher 
required levels of stockage, more frequent re-ordering, and, in general, higher costs 
of supporting the weapons system.   This high variance and associated high support cost 
have been frequently reported in studies of Naval inventory systems.   However, little 
guidance has been provided about what the Navy can do about these problems.   Our model 
suggests a number of management procedures which can be employed to solve these 
problems beyond the usual suggestion that the equipment be redesigned so as to be made 
more reliable.   In fact, we demonstrate, in some cases, that a reduction in uncertainty 
can be of more value than an equivalent increase in reliability.   First, extensive opera- 
tional testing can be undertaken to gather data which will lead to more certainty about 
demand rates.   Planning to extensively deploy an untested weapons system and to support 
it for wartime usage will require high levels of inventory support.   Furthermore, across 
parts, the higher the level of uncertainty, the greater will be the percentage of this in- 
ventory which will go unused.   However, it is impossible, a priori, to tell exactly which 
parts will be used, so that extensive support across all such parts is required.   Secondly, 
greater standardization of maintenance facilities and practices will reduce the variance 
in this demand and thus lead to lower inventory system costs.   Finally, the ability of the 
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inventory system manager to incorporate information peculiar to a particular squadron 
and deployment can reduce the variance in demand that the inventory system must protect 
against. 

5. Numerous empirical studies of demand data have concluded that the observed pat- 
tern of demands over time correspond well with the realizations of a compound Poisson 
process.   The explanations advanced to support this conjecture have largely been un- 
satisfying.   The model developed in this paper, which follows from a few relatively mild 
assumptions, leads to one member of the compound Poisson family -- the Negative 
Binomial distribution.   Thus the results of this paper are supported by a wide body of 
previous empirical research. 

6. A second major conclusion of previous empirical research has been that, with 
few exceptions, demands for spare parts are uncorrelated with program factors such 
as flight hours.   The model developed in this report suggests that flight hours do enter 
into the determination of spare parts demands, but in a very complex and distinctly non-«« 
linear way.   We show that, in fact, the theoretical model developed here predicts the 
finding of a lack of correlation between flight hours and demand.   The optimal inventory 
decisions generated in the model involve a highly complex interaction among the para- 
meters of the demand distribution, relevant costs, and flight hours.   Predictions of 
demand based upon simple linear relations between demands and flight hours are overly 
naive and are based upon a faulty premise. 

Many of the mathematical results in this paper are well known.   They are reproduced 
here both for completeness and because their implications for support policy are extreme- 
ly important and have not been fully explored in the past. 

The implementation of the procedures described in this paper should present little 
difficulty to managers of the Navy's inventory systems.   All of the procedures employed 
in the analysis, including those for determining optimal inventory decisions and for 
incorporating new demand information as it becomes available, have been programmed 
and require only a few seconds of processing time.   The decision rules have been shown 
to be of a particularly simple form and thus can be used by managers of deployed squad- 
rons.   The Center for Naval Analyses will provide assistance in adapting the existing 
computer programs to other facilities. 

-3- 
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II.   A MODEL OF SPARE PARTS DEMAND 

THE PROBABILITY MODEL 

Inventory decisions in Navy Supply are typically based on point estimates of demand. 
When demands are subject to random variation, procedures based on point estimates will 
typically lead to poor decisions.   An optimal inventory decision model must consider the 
full range of possible realizations of the random process which generates demands and 
their associated probabilities.   The inventory model described in section TV does so.3 
In this section, we derive a probability model of demands which coincides well with 
empirical studies of demand data and is suitable for input in the inventory model. 

Numerous empirical studies of demand data have been conducted.4  Three conclusions 
emerge: 

a. With very few exceptions, demands for spare parts are uncorrelated with 
program factors such as flying hours. 

b. The Poisson distribution provides an adequate description of demands for 
parts exhibiting low demand rates. 

c. The variance of demands for high usage parts over time is typically very 
large compared to their mean. 

The latter observation has led to rejection of a simple Poisson model of the demand 
process for high usage rate parts since the Poisson distribution has identical mean and 
variance. 

Several conjectures have been offered to explain this behavior and to justify the 
choice of one member of the compound Poisson family of distributions. 5 We have found 
these explanations unsatisfying either because they fail to correspond to operational 
experience or because the models they were advanced to support would be inappropriate 

3 
A further treatment of the theoretical basis for this model is contained in Brown, 

George F. Jr., Corcoran, T. M., and Lloyd, R. M., "Inventory Models with Forecasting 
and Dependent Demand," Management Science, March, 1971, and "A Dynamic Inventory 
Model with Delivery Lag and Repair," Center for Naval Analyses, Professional Paper 3, 
1969. 

For example, see Fawcett, W. M., and Gilbert, R. D., "Characteristics of Demand 
Distributions for Aircraft Spare Parts," General Dynamics Fort Worth Division Report 
ERR-FW-512, November 1966.   Also see Youngs, J. W. T., Geisler, M. A., and 
Brown, B. B., "The Prediction of Demand for Aircraft Spare Parts Using the Method of 
Conditional Probabilities," RAND Corporation Report RM-1413, January 1955. 

For example, see Feeney, G. J., and Sherbrooke, C. C, "The (s-l,S) Inventory Policy 
under Compound Poisson Demand," RAND Corporation Memorandum RM-4176-PR, 
March 1966.   The authors offer four conjectures to explain the high variability observed 
for recoverable item demand. 
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if in fact the explanations were valid.   Instead we show that one member of the compound 
Poisson family, the Negative Binomial distribution, follows logically from some rather 
mild assumptions and some practical constraints imposed by the nature of the estimation 
problem. 

First we assume that demands for parts in non-overlapping time intervals are statis- 
tically independent.   It is easily shown (cf. Feller [c] ) that any distribution on the 
integers which satisfies this assumption is a member of the compound Poisson family. 

Next we will assume that we may describe the uncertainty which exists about the 
anticipated rate of failures,    X , by assigning to it a probability distribution which sum- 
marizes designers', manufacturers', and support managers' best "guesses" as to the 
values of mean time between failures which may be realized when the equipment in 
question is placed in operation.   The treatment of demand rate as a random variable 
may at first appear strange to those unacquainted with Bayesian methods.   Justification 
of this procedure is treated extensively in Raiffa and Schlaifer [d] and DeGroot [b] . 
In this particular application, however, it is intuitive that the underlying mean rate of 
failures which will be experienced when an equipment is employed in the fleet should be 
expected to vary randomly with varying and unpredictable environments.   We will refer 
to the distribution of   X as the prior distribution. 

For any given realization of failure rate per unit of time, say X , we will assume 
that the probability of observing more than one demand in any very small increment of 
time is itself vanishingly small. 

With this last assumption and the assumption of independence between non-overlapping 
time intervals we may conclude0 that the conditional probability of observing k  failures 
in any time increment  t  given that the rate   X  holds is given by: 

P[k|x]=<^f^       • <*> 

If we denote our prior distribution on   X  by   F(X) , then the unconditional probability of 
observing k  failures in time  t  is: 

QB 

P(k) = /"   P(k |X)dF(X) 

r »,,-k  -Xt 

For a rigorous statement of the postulates leading to this distribution, see Feller [c] . 



To this point, we have considered estimates of the distribution of demands based 
solely on prior considerations; that is, before demand data has been generated. Naturally, 
as demand data accumulates, we would wish to modify our prior beliefs about the mean 
demand rate to reflect this additional information.   This is accomplished by an application 

of Bayes rule as follows.   Let  f(X) =   j \ ■    be the prior density of   X and suppose that ii "ax in 

each of  n time periods  t. , we have observed x.  demands, where  i=l,2, ...n  .   Then 

the conditional density of  X , given the observations, is: 

n 
nP[x.|\t.].f(X) 

«X|x1,...,xb)-SÜ-  (3) 
J0    TTP[x.|yt.].f(y)dy 

i=l 

We will refer to the conditional distribution of   X given the observations as the posterior 
distribution of   X. 

With the additional information about demand rate summarized by the posterior dis - 
tribution, the unconditional distribution of demands in equation (2) now becomes: 

CkH' 
/wvk -Xt 
iAiij^  f(X|xr...,xn)dX   . (4) 

'0 

CHOOSING THE HUOR DISTRIBUTION 

To determine a suitable prior distribution  F( X) , Raiffa and Schlaifer [d] establish 
the following desiderata: 

"1.   F   should be analytically tractable in three respects:   (a) it should be 
reasonably easy to determine the posterior distribution resulting from 
a given prior distribution and a given sample; (b) it should be possible 
to express in convenient form the expectations of some simple utility 
functions with respect to any member of F ;   (c) F  should be closed 
in the sense that if the prior is a member of  F , the posterior will 
also be a member of F . 

2. F   should be rich, so that there will exist a member of  F   capable of 
expressing the decision maker's prior information and beliefs. 

3. F  should be parametrizable in a manner which can be readily interpreted, 
so that it will be easy to verify that the chosen member of the family is 
really in close agreement with the decision maker's prior judgments 
about   9 and not a mere artifact agreeing with one or two quantitative 
summarizations of these judgments." 
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It is of particular importance in this application that the criterion 1(c) apply.   If we 
chose a prior distribution for which it did not, then the posterior distribution realized 
after each period of data collection would have an algebraic form differing from that of 
the preceding stage.   Thus, extensive reprogramming would be required at each stage, 
effectively limiting the practical usefulness of the procedure.   We therefore choose a 
family of distributions which satisfies 1(c) and examine its other properties. 

A random variable   X is said to be distributed as the two parameter Gamma distribu- 
tion with parameters a and ß , denoted G   fi , if its density is: 

ö, p 

f(X)=  l^-V^    . (5) 

If the parameter   X in the Poisson density given in equation (5) has a prior distribu- 
tion,  G    o , and if  x., i=l,2, ...n ,   are  n independent samples from that Poisson 

process, then the posterior distribution of   X is again a Gamma distribution with revised 
parameters 

n 
a' =a+    T.   x. , ß' = ß + n     . 

i=l   * 

Thus a Gamma prior satisfies criterion 1(c) and coincidentally 1(a). 

For this application the utility function is defined implicitly by the inventory program 
and thus criterion 1(b) reduces to the requirement that the unconditional distribution of 
demands be computationally tractable.    From equations (2) and (5) we derive the uncondi- 
tional distribution of demands as: 

P(k) -[ 
0 

Xke'X    f   x«-le-ß\» 

the Negative Binomial distribution with parameters  a and   n \_ .    .   A simple recurrence 

relation which simplifies computation of the probabilities is given in section IV. 

The Gamma family provides an extremely wide range of shapes, amply satisfying the 
second major criterion. 

The final criterion deserves more extended consideration.   The Gamma distribution 
is completely characterized by its mean and variance or by the mode and variance.   The 
expected value (the mean) and the most likely value (the mode) of the rate of demands are 
probably meaningful concepts to an inventory manager or provisioner.   It is doubtful, 
however, that variance is an equally meaningful concept and that prior estimates of it 
would really reflect their prior beliefs as to likely system performance.   This question is 
treated in more detail in INS Study 37 [e], 
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It is of interest to note that while the distribution in equation (6) is compound Poisson, 
the random process over the time parameter  t  is not.   In fact, a non-degenerate mixture 
of Poisson processes cannot yield a compound Poisson process.   The distribution in equa- 
tion (5) is in fact infinitely divisible in the parameter  a not in  t J 

7  We are grateful to Dr. Joseph Bram, who drew this point to our attention. 
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in.   SOME IMPORTANT IMPLICATIONS OF THE PROBABILITY MODEL 

DEPLOYMENT OF NEW WEAPONS SYSTEMS 

The model we have described has great intuitive appeal in that its development follows 
from a relatively few, mild assumptions, all of which appear consistent with operational 
experience.   In addition there is strong (and plentiful) empirical evidence that the model 
accurately reflects real world experience.   Predictions based on this model therefore 
merit serious consideration, particularly in view of their implications for wartime con- 
tingency planning. 

The demand distribution given in equation (6) has mean and variance 

E(k) at 
"T    ' 

Var(k) art(ßK) 

The mean and variance of the prior distribution given in equation (5) are: 

E(X)        =-p-     , 

Var (X) = 4-      • 
ß2 

A large prior variance which implies a large uncertainty about  X is thus reflected in a 
large unconditional variance of demand.   In addition the variance of the demand distribu- 
tion increases quadratically in flying hours  t   .   The immediate implication of increasing 
variance is that the probabilities of large demands also increase.   To provide desired 
system reliability it is then necessary to procure larger inventories.   But for fixed mean 
demand an increase in demand variance also implies an increase in the probability that 
no demands will in fact occur. ° Thus the likelihood that expenditures will be wasted also 
becomes large.   Of course across parts, it is impossible to tell with certainty which will 
be required and which will not. 

Variance of demand is controlled by several factors.   First there is the reliability 
a 
T of the system, reflected in the prior mean, -n— .   Then there is the variance of the prior, 

, which reflects the state of uncertainty about the current estimate of demand rate. 
ß 

Finally, there is the projected flying hour rate. 

5  
The mean demand per flying hour is always less than one, so that for a fixed mean the 

increased mass at large values must be "balanced" by an increase at zero. 

-11- 



One conclusion is immediate.   A new weapons system, incorporating "state of 
the art" equipment, whose performance may be projected only with great uncertainty, 
will require a large inventory of spare parts to ensure acceptable reliability.   If, in 
addition, it is intended that the system be capable of sustaining an intensive wartime 
flying program, then the inventory must be expanded many times over.   In fact, the 
sample calculations given in section IV indicate that even with the penalty cost fixed at 
the peacetime rate, which is no doubt unrealistically low, the war reserve inventory 
necessary to ensure high reliability in the absence of resupply would far exceed the 
levels normally maintained. 

An inventory policy designed to provide for wartime employment early in the life 
of the system would not only be costly but also extremely wasteful.   It is important to 
realize the distinction between the planned inventory necessary to assure readiness and 
the usage which will actually be generated by the random process used in planning.   The 
inventory must be designed to guard against demands whenever there is significant 
probability that they will occur.   The demand actually realized will reflect the fact that 
there is also significant probability that a specific part will experience few or even zero 
demands. 

The alternative is to defer some procurement decisions until the acquisition of demand 
data permits more reliable prediction of demand rates.   As noted in section II, the pos- 
terior Gamma distribution of demand rate after n realizations of the process yielding 
demands  X.,i=l,2, ...,n , has parameters: 

n 
a+    £    X., ß + n    . 

i=l     1 

Then the posterior unconditional distribution of demands has variance: 

n 
(<*+  E   X.)t(fr-n-tt) 

Var(k) = i=i—^  

and thus the posterior variance decreases roughly as — .   It follows that, in addition to 

allowing management to isolate those equipments whose realized reliability will dictate 
redesign action, deferral of major commitment of resources enables us to design future 
inventories providing the desired level of readiness assurance but at a greatly reduced 
cost. 

Deferral of procurement, of course, implies acceptance of a reduced state of readi- 
ness in the early stages of the program so that enhanced readiness and the ability to 
respond to contingencies can be realized in later stages at acceptable cost.   If, however, 
an initial high state of readiness and ability to respond to contingencies is deemed impera- 
tive, then the inventory should be planned realistically in the full realization that it will 
involve very great cost and potential waste. 

-12- 



DEMAND TO FLYING HOUR CORRELATION 

It has been noted earlier that estimates of the correlation between demand (or failures) 
and flying hours based on observed data are typically small.   We now demonstrate that 
this should in fact be the expected outcome from data generated by our probability model. 

Treating flying hours  t as a random variable, we calculate the population correlation 
between t and k  , the number of failures, as follows. 

The covariance of t and k  may be written 

Cov (t,k) = E(t(k-E(k))) 

= E (tk) - E(t)E(k)    . 

Then       E(k) =E(E(k)|t) 

= E(£t) 

= pr E<«>   » 

E(tk)       =E(E(tk|t)) 

-B<5-t) 

= fE(t2), 

whence   Cov (t,k) ■ g- Var(t)    . 

Since      Var(k)     = E (k2) - E2(k) 

and E (k2)       = E (Ek2 |t)) 

= E(^)+(^t)2) 

= -L (E(orßt) + E (at2) + a2E (t2))    , 
ß2 

2 2 
Var(k) = Z E (t) + -2L E (f ?+ % E (t2) - % E2(t) 

P ß2 ß2 ß2 

= -^(E(t) + ^E(t2)+|-Var(t))    . 
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Thus 

-fVar(t) 1/2 
Corr(t, k) = ( P     2  

VE(t) + ^E(t^)+|Var(t)/ 

1 + ß^itL+I   ^iÄJ k      a Var(t) + cc Var(t) / 

1 \l/2 

\l/2 

(l+l   JEM. 
V1 ^ Var(t)/ 

Now  g  is the expected number of demands per flying hour, which is typically very small, 
so that strong correlation will exist only if the variance of t  is large relative to its mean. 
We are thus led to the somewhat vacuous conclusion that correlations will be large only if 
flying hours are extremely variable and thus cannot be predicted with assurance. 

From our earlier discussion of the probability model, it should be apparent that de- 
mands are not statistically independent of flying hours, but it should also be clear that 
the dependence is distinctly non-linear.   The optimal inventory decisions generated in 
the model involve highly complex interactions among the parameters of the distribution, 
the relevant costs, and flying hours.   Predictions of demand based on simple linear rela- 
tions between demands and flying hours are overly naive and, as the discussion here 
shows, are based on a faulty premise. 
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IV.   AN APPLICATION TO INVENTORY MANAGEMENT 

CALCULATION OF PROBABILITIES REQUIRED FOR THE INVENTORY MODEL 

The inventory model employed in this analysis employs dynamic programming 
techniques to determine the optimal order size in each period,   y  , and the optimal 

initial stockage, I   , using a single state variable,   J  , the number of items on hand, 

on order (but not yet delivered), and in repair at the end of period t   .   Defining f (J) 

as the total discounted expected costs under control of the inventory manager from 
period  t  to the end of the planning horizon, given J units on hand, on order, and in 
repair, following an optimal policy, the following recursive relationship may be used 
to determine  y.   and I   : Jt o 

0 fort= T- 8+1, ...,T+1 

fA-i> =' 

yt*0 
2. 

min {K6 (yt) + <*Eft+1 L]t_1 + Yt -Dt +Rt] 

lct+<2 °t-l + yP} fort-li....T-£1 

atfij+ G'(l^ + KHlo) fort = 0 

where 

G ,p (J) = expected holding and penalty costs during period t+£. , given J 

units on hand, on order, and in repair at the beginning of period  t ; 

G'(I )     = expected holding and penalty costs during periods 1, 2, ..., £. , plus 

initial holding costs, given a starting on hand inventory of I 

This inventory model is designed to be used with any distribution of demand.   Three 
probability calculations are required: 

1. Probability of k.   failures in n  decision periods. 

2. Probability of k„  non-repairable failures in m  decision periods, given a 

probability  p that a failed part is repairable. 

3. The probability that in two non-overlapping time intervals,   t   and t_   of 
length  n  and m   periods respectively, a total of k  failures Wd 
non-repairable failures will be observed where all failures are 
recorded in t.   and only non-repairable failures are recorded in t2 . 

The first calculation follows immediately from equation (6). 
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If  t  is the number of flight hours per aircraft per period and the distribution of  X , 
rate of failures, is  Go, then 

p[k failures in one aircraft in one period] 

Then if  r  is the number of aircraft, 

def PQc. failures in  n periods] .    P     (k ) 

(7) 

=  /nra + k   - l\/J_\llx" /_L_\K1 
(        k/      )(ß + t)       (ß + t) (8) 

This result follows because the Negative Binomial is reproductive with respect to  a . 
Note that we are modeling the  n  period,   r  aircraft process as the sum of  n • r inde- 
pendent replications of the basic process in equation (7).   An alternative formulation 
would result if we considered a single process and nrt flying hours as follows: 

*„«-.£ -^ dF(X) 

=
 \       k      ) (p + nrt)(ß+W * (9) 

However, the intent here is to incorporate the uncertainty about the value of   X. 
which arises in large part from the variability and unpredictability of the environments 
in which individual aircraft will operate at different times, and thus the representation 
in equation (8) is appropriate. 

For the second calculation we require the following. 

Theorem.   If failures are distributed as the Negative Binomial with parameters  a and 

( o j~ - ) and the probability that a failed part is repairable is  p , then the distribution 
\ P + W I        ß       \ 
of non-repairable failures is again Negative Binomial with parameters  a and (g . i\    n\t/' 
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ProQf, 

P [k non-repairable failures ] 

=    f P[k non-repairable failures | x failures ] . 

_ /(l-p)t\k/   3   \« l   f (a + x + k-l)l ./pt_ \J 

" I F+t/ iF+t/    k! vtn     x! (a - 1)!       $f+t/ 

■(^)6rir)rri)-«,r,x+,E-1)W 

Again exploiting the reproductive quality of the Negative Binomial, we have the probability 
that  r aircraft generate k_  non-repairable failures in m  periods: 

The third calculation may now be carried out directly: 

P[k1+k2 = k]= _£   Pn,r<k-J>Pm,rG>     • (ID 

Calculations are simplified by use of the following simple recurrence.   If  K  is dis- 
tributed as the Negative Binomial with parameters  a and b , 

PLK = k + l] = a:i^(l-b)P[K = k] 

P[K=0] = ba   . 

EMPIRICAL RESULTS FOR F-14 PARTS 

This section contains empirical results from an application of the procedures 
described in the preceding section to parts currently being provisioned for the F-14. 
While a number of the results summarized here have been predicted by the theory, they 
give illustrations of the great magnitude of the effects of these influences. 
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The first table presents results for the F-14 nose landing gear as a function of the 
degree of uncertainty about the failure rate. 9  A wide range of the parameters  a and ß 
was chosen to illustrate prior distributions all having the same mean, but with increasing 
uncertainty (or variance).   Each of these prior distributions implies the parameters of 
the unconditional demand distribution (the Negative Binomial), which are also tabulated. 
Finally, three outputs of the inventory model are included: 

(1) The optimal initial stockage 

(2) The optimal re-order policy, 

which is of the (s, S) form. If X is the stock on hand, on order, and in repair at the 
beginning of a period, the optimal re -order policy is do not order if X s s and order 
S -X if X <s   . 

(3) The expected inventory system costs, 

over a six-month cruise, if an optimal policy is followed (for a deckload of 24 aircraft, 
each flying an average of one hour per day). 

The first column in the table corresponds closely with a simple Poisson distribution. 
The mean and the variance of the unconditional demand distribution are virtually identical. 
This results from the fact that the variance of the prior is extremely small; failure rates 
different from the prior mean are felt to be very unlikely and are given little weight. 
Moving across each table, these results are presented for cases in which the uncertainty 
about the true failure rate grows larger; thus the variance in the unconditional demand 
distribution also increases.   As the uncertainty grows, the inventory system costs and 
the required stockage levels also increase rapidly.   These empirical results clearly 
demonstrate the high costs associated with uncertainty about the demand distribution, and 
show the importance of the management actions which can be taken to reduce this uncer- 
tainty.   Early in the provisioning process, it is unlikely that there would be great confi- 
dence about the demand rate; thus, if parts are procured at this time, the high inventory 
system costs associated with uncertainty must be incurred.   Planning for full deployment 
of a weapons system before much information about it is gathered could potentially require 
support at a cost much higher than would be required later in its service life. 

The great costs associated with uncertainty are further illustrated in table II.   There, 
inventory system costs are presented for a range of means and variances of the uncondi- 
tional demand distribution.   A decrease in the mean represents an increase in "reliability,' 
while an increase in the variance represents a greater degree of uncertainty about the 
mean.   The surprising conclusion that comes from this table is that uncertainty may be 
more expensive to the Navy than unreliability.   Changes in the mean (holding variance 
constant) affect inventory system costs very little, while changes in the variance (holding 
the mean constant) produce much greater cost increases.   Hence programs to redesign 
equipment may have very little impact unless greater certainty results from the redesign 
process. 

Table III shows the effect of changes in the flying hour program on optimal stockage 
and re-order policies, and on expected inventory system costs.   We have previously 
shown that, while demands cannot be predicted by means of a naive relationship with the 
9 
Similar tables for additional parts appear in INS Study 37. 
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TABLE II 

EFFECTS OF RELIABILITY AND UNCERTAINTY 
ON EXPECTED INVENTORY SYSTEM COSTS* 

^"-^^Mean 
0.010 0.012 0.014 0.016 0.018 

Variance"^ 

0.010 64,716 

0.012 71,418 72, 003 

0.014 77,812 78, 305 79, 439 

0.016 84,010 84, 595 85, 604 87, 142 

0.018 89,919 90, 755 91,861 93,316 95,196 

"For nose landing gear 

TABLE III 

EFFECTS OF CHANGES IN FLIGHT HOUR PROGRAM* 

Optimal Optimal Expected 
Flight initial re-order inventory 
hours** stockage policy system costs 

0.5 2 (1,2) 57,685 
0.75 2 (1,2) 73,000 
1.0 2 (1,2) 90,298 
1.25 3 (2,3) 105,454 
1.5 3 (2,3) 120,837 
2.0 4 (3,4) 151,575 
2.5 5 (4,5) 180,982 
3.0 6 (5,6) 209,899 
4.0 7 (7,8) 267,278 
5.0 8 (8,9) 321,050 

"For nose landing gear,   a - 0.056, ß = 4.0 
"Average daily flight hours per aircraft 
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flying hour program, the flying hour program does enter in the demand distribution in a 
complex way and thus must affect resource allocation decisions.   These points are clearly 
demonstrated in the table — higher flying hour programs require greater inventory invest- 
ment and are much more expensive.   Furthermore, the greater the uncertainty about the 
system, the greater will be the increase in this investment.   Wartime flying hour programs 
with a system about which there is great uncertainty will require enormous inventory 
investments.   The potential value of management actions aimed at reducing uncertainty 
again becomes apparent. 

Finally, table IV illustrates the fact that greater uncertainty about a system also leads 
to greater potential wastage.   Presented in the table are the probabilities of demands of 
various sizes on a single day for a system with mean of 0.014 and the variances listed. 
As the variance increases, two things happen:  the probability of zero demands increases 
and the probability of large demands increases.   Thus, while the inventory decision must 
provide insurance against these high demands and the associated lessening of readiness, 
the probability of this insurance being wasted also increases.  While the changes in the 
probability of zero demands seem small numerically, over an extended period of time, 
these small changes become significant.   Again, a reduction in uncertainty will lead to 
a decrease in both required stockage and potential wastage. 
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